Our son is almost three, and he’s starting to really like to draw. He’s also getting to the age where, if he doesn’t have something to do, he’ll tear our apartment to shreds, so most Sunday afternoons we dump a lunchbox of crayons and whatever paper we have on the floor. It’s arts and crafts time, Yosef!

Now, don’t get me wrong, I like watching my kid draw as much as the next parent. (“It’s a fish? No, a dog? Oh, wow, that’s terrific.”) But, what can I say, I get a bit bored.

More to the point, drawing with crayons is so much fun. Arts and crafts time is great. So I draw along with him. And very often I find myself trying to doodle some math.

Lately I’ve been studying a book called *Classic Set Theory*. It’s been really working for me. It has great exercises, clear organization, oodles of historical context. It’s subtitled “For Guided Independent Study,” and it’s making me wonder why every math textbook isn’t for guided independent study too.

Set theory and logic was my way back into math. I was a philosophy major and had all sorts of worries about whether I could handle a college math class. Then I took a philosophy class about Frege, Russell and Wittgenstein, figures who stand at the creation of mathematical logic and set theory.

In that class, I was finally starting to understand how I had to study this stuff — line by line, ask myself lots of questions, don’t leave anything fuzzy. (Which is more of less how I know to study Talmud.) And I was realizing that if I put in this sort of effort, and if I was honest with myself about what I got and what I didn’t, I could understand some (if I do say so) ridiculously abstract stuff at at least a basic level.

“At some level,” because there was still a lot of stuff that I didn’t get. Since college, set theory and logic has been some of the math that I’ve read the most on. But I still haven’t felt like I *really *understood set theory, as I hadn’t been able to make much headway in any set theory text.

This is part of why *Classic Set Theory *is so much fun for me to read. Finally, I feel like I’m starting to get this stuff. Finally!

Here’s the question I found myself asking while drawing with my son today: what could the axioms of set theory* look like if you drew them?

* *The axioms of Zermelo-Fraenkel set theory with the Axiom of Choice, I mean.* *I’d love to understand some of the other set theories better. During that class I took in college we studied type theory as Russell’s attempt to patch up the contradiction he discovered in Frege’s system, but I think I only ever had a surface-level understanding of what this meant.*

There are nine axioms in all. I know that explanations work better when the objects to be explained are *doing *stuff, so I tried to make the axioms as active as possible in the drawings. In practice, this means I interpreted the axioms as little machines, rather than as rules or laws. (Axioms have always been presented to me as rules, and until the last couple of days that’s always how I’d always thought of them.)

The toughest one to visually represent was Replacement. The ones I’m most worried about having misrepresented are the Axiom of Infinity and of Foundation. Honestly, all of them are probably flawed in some way. There might be mathematical errors or misinterpretations — as long as you’re nice about it, would you point those out to me?

But I’m not sharing these as resources or to make some point about teaching. I’m sharing these out of celebration, and a bit of relief, that I might be finally figuring out how to learn some math on my own.